
Project 2: MapReduce
CSE 130 Principles of Computer Systems Design

Spring 2023

Project 2 is out!
MapReduce-style Multi-threaded Data-Processing Library

Uses POSIX Threads (pthread) to process data in parallel

Due 4/30

GitHub Classroom to create a repo, submit on Gradescope

MapReduce
MapReduce is a programming model and an associated implementation for

processing and generating large data sets. Users specify a map function that
processes a key/value pair to generate a set of intermediate key/value pairs, and

a reduce function that merges all intermediate values associated with the same
intermediate key. Many real world tasks are expressible in this model...

"MapReduce: Simplified Data Processing on Large Clusters" Dean & Ghemawat

https://dl.acm.org/doi/10.1145/1327452.1327492

Programming Model
Users provide two functions: map and reduce

Map takes an input pair and produces a set of intermediate key/value pairs. The

MapReduce library groups together all intermediate values associated with the
same intermediate key I and passes them to the Reduce function.

The Reduce function, also written by the user, accepts an intermediate key I and a
set of values for that key. It merges together these values to form a possibly

smaller set of values.

Example: Word Counting Problem (1/3)
Suppose that there are a large collection of text documents and we want to count the
number of occurrences of each word.

map(String key, String value):
 // key: document name
 // value: document contents
 for each word w in value:
 EmitIntermediate(w, "1");

reduce(String key, Iterator values):
 // key: a word
 // values: a list of counts
 int result = 0;
 for each v in values:
 result += ParseInt(v); Emit(AsString(result));

Example: Word Counting Problem (2/3)

Input: (document name, document contents)

[("file1", "hello world"), ("file2", "good afternoon world")]

Map(Input)

[
 ("hello", 1), ("world", 1), ("good", 1),
 ("afternoon", 1), ("world", 1)
]

Example: Word Counting Problem (3/3)

Group by Key

{
 [("hello", 1)],
 [("world", 1), ("world", 1)],
 [("good", 1)],
 [("afternoon", 1)],
}

Reduce

[("hello", 1), ("world", 2), ("good", 1), ("afternoon", 1)]

Project
Complete the map_reduce function in mr.c

void map_reduce(mapper_t mapper, size_t num_mapper, reducer_t reducer,
 size_t num_reducer, kvlist_t* input, kvlist_t* output);

mapper is a function that performs the map operation.

num_mapper is the number of threads used to execute mapper .
For example, if num_mapper == 8 , map_reduce will spawn eight threads,

each processing a subset of the data

reducer is a function that performs the reduce operation.

num_reducer is the number of threads used to execute reducer .

input is a list of key-value pairs that represent the data to process

output is a list of key-value pairs that map_reduce writes the results to.

kvlist.h

map_reduce needs to work with lists of key-value pairs. Because C arrays are hard to
work with (especially when the size is not known), kvlist.h provides two data

structures, kvpair_t and kvlist_t .

kvpair_t

kvpair_t stores a pair strings: key and value.

typedef struct kvpair_t {
 char *key;
 char *value;
} kvpair_t;

// creates a new `kvpair_t` by copying the provided `key` and `value`
kvpair_t *kvpair_new(char *key, char *value);

// creates a copy of `kv`.
kvpair_t *kvpair_clone(kvpair_t *kv);

// `kvpair_free` frees `kvpair_t`
void kvpair_free(kvpair_t **kv);

// `kvpair_update_value` updates the value of the pair.
void kvpair_update_value(kvpair_t *pair, char *new_value);

kvlist_t

kvlist_t is a linked list of kvpair_t

// `kvlist_new` creates a new `kvlist_t`.
kvlist_t *kvlist_new(void);

// `kvlist_free` frees `kvlist_t`. It also frees all pairs inside the list.
void kvlist_free(kvlist_t **lst);

// `kvlist_append` appends the pair `kv` to the list `lst`.
void kvlist_append(kvlist_t *lst, kvpair_t *kv);

// `kvlist_extend` concatenates two lists `lst` and `lst2`.
void kvlist_extend(kvlist_t *lst, kvlist_t *lst2);

// `kvlist_sort` sorts the list by keys.
void kvlist_sort(kvlist_t *lst);

// `kvlist_print` prints the contents of `lst` to the file descriptor `fd`.
void kvlist_print(int fd, kvlist_t *lst);

kvlist_iterator_t

Use kvlist_iterator_t to iterate through lists.

/**
 * `kvlist_iterator_new` creates a new iterator.
 */
kvlist_iterator_t *kvlist_iterator_new(kvlist_t *lst);

/**
 * `kvlist_iterator_next` returns the next `kvpair_t`.
 * It returns `NULL` if there is no more pair.
 */
kvpair_t *kvlist_iterator_next(kvlist_iterator_t *it);

/**
 * `kvlist_iterator_free` frees `kvlist_iterator_t`.
 */
void kvlist_iterator_free(kvlist_iterator_t **it);

kvlist.h in action

// construct a list
kvlist_t* list = kvlist_new();
// append 3 pairs
kvlist_append(list, kvpair_new("key1", "value1"));
kvlist_append(list, kvpair_new("key2", "value2"));
kvlist_append(list, kvpair_new("key3", "value3"));
// construct an iterator
kvlist_iterator_t* itor = kvlist_iterator_new(list);
while(true) {
 kvpair_t* pair = kvlist_iterator_next(itor);
 if(pair == NULL) {
 // `kvlist_iterator_next` returns `NULL` at the end of list
 break;
 }
 printf("key = %s, value = %s\n", pair->key, pair->value);
}
// cleanup
kvlist_iterator_free(&itor);
kvlist_free(&list); // will free the list and pairs

hash.h

Use hash.h to hash strings.

unsigned long hash(char *str);

map_reduce Structure

There are five phases in map_reduce as follows:

Split Phase: Split the input list into num_mapper smaller lists.

Map Phase: Spawn num_mapper threads and execute the provided map function.

Shuffle Phase: Shuffle mapper results to num_reducer lists.

Reduce Phase: Spawn num_reducer threads and execute the provided reduce
function.

Concatenate the resulting lists to get a single list.

Split Phase
In the split phase (also called the partition phase), you split the input list into
num_mapper smaller lists so that each smaller list can be processed by different

threads independently.

Map Phase
In the map phase, you create num_mapper threads. Each thread is responsible for a

smaller list from the previous phase and calls the mapper function to obtain a new list.

Shuffle Phase
In the shuffle phase, you create num_reducer independent lists that can be processed
in the next phase. Since you need to provide all pairs with the same key to the
reducer function, the same key must be assigned to the same list.

Reduce Phase
In the reduce phase, you create num_reducer threads. Each thread is responsible for

a smaller list from the previous phase and calls the reducer function to aggregate
results.

When calling reducer , you need to construct a list of all pairs with the same key.
There are many ways to do this, but one way is to use the kvlist_sort function.

Output
You need to store the results in the output list passed as an argument. Use
kvlist_extend to move pairs to output .

Additional Functionality
In addition, your implementation must do the following:

You should not have a main function in mr.c .

make must create mr.o . We will use this object file to link your code with our test

programs.

Your code must use POSIX threads (pthread.h).

Your code must not cause segfaults.

All source files must be formatted using clang-format. Run make format to

format .c and .h files.

Your map_reduce must not leak memory. Use valgrind to check memory leaks.

Testing with word-count

word-count is a variant of the word-counting example from the previous section. It is
invoked with three or more arguments:
word-count $NUM_MAPPER $NUM_REDUCER file

$NUM_MAPPER is a positive integer that specifies the number of threads used for

the map function.

$NUM_REDUCER is a positive integer that specifies the number of threads used for
the reduce function.

file ... is one or more (text) files.

Suppose that you have a file hello.txt whose content is "hello, world!".

pthread API

POSIX threads are a set of functions that support applications with requirements
for multiple flows of control, called threads, within a process.

A couple of functions you might find useful:

pthread_create : create threads

pthread_join : to wait for the termination of the thread

pthread_mutex_init / pthread_mutex_destroy to initialize/destroy mutex

pthread_lock / pthread_unlock to lock/unlock mutex

Creating Threads

int pthread_create(pthread_t* thread, const pthread_attr_t* attr,
 void* (*start_routine)(void*), void* arg);

Joining Threads

int pthread_join(pthread_t thread, void **value_ptr);

Example: Create Thread
https://replit.com/@shumbo/cse-130-pthread-demo

#include <stdio.h>
#include <pthread.h>

void* thread_fn(void* arg) {
 printf("hello from sub thread\n");
 return NULL;
}

int main(int argc, char** argv) {
 pthread_t t;
 pthread_create(&t, NULL, thread_fn, NULL);
 printf("hello from main thread\n");
 pthread_join(t, NULL);
}

https://replit.com/@shumbo/cse-130-pthread-demo

Example: Pass value to threads
https://replit.com/@shumbo/cse-130-pthread-args

#include <stdio.h>
#include <pthread.h>

void* thread_fn(void* arg) {
 int num = *(int*)arg;
 printf("subthread received %d\n", num);
 return NULL;
}

int main(int argc, char** argv) {
 int num = 5;
 pthread_t t;
 pthread_create(&t, NULL, thread_fn, &num);
 printf("main thread passed %d\n", num);
 pthread_join(t, NULL);
}

https://replit.com/@shumbo/cse-130-pthread-args

Example: Data Race
https://replit.com/@shumbo/cse-130-race

#include <stdio.h>
#include <pthread.h>

volatile int x;

void* increment_x(void* arg) {
 int num = *(int*)arg;
 for(int i = 0; i < num; i++) {
 x += 1;
 }
 return NULL;
}

int main(int argc, char** argv) {
 int num = 1000 * 1000 * 100;
 pthread_t t1, t2;
 pthread_create(&t1, NULL, increment_x, &num);
 pthread_create(&t2, NULL, increment_x, &num);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 printf("%d * 2 = %d\n", num, x);
}

https://replit.com/@shumbo/cse-130-race

Example: mutex

https://replit.com/@shumbo/cse-130-mutex

#include <stdio.h>
#include <pthread.h>

volatile int x;
pthread_mutex_t mutex;

void* increment_x(void* arg) {
 int num = *(int*)arg;
 for(int i = 0; i < num; i++) {
 pthread_mutex_lock(&mutex);
 x += 1;
 pthread_mutex_unlock(&mutex);
 }
 return NULL;
}

int main(int argc, char** argv) {
 int num = 1000 * 1000 * 100;
 pthread_mutex_init(&mutex, NULL);
 pthread_t t1, t2;
 pthread_create(&t1, NULL, increment_x, &num);
 pthread_create(&t2, NULL, increment_x, &num);
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 pthread_mutex_destroy(&mutex);
 printf("%d * 2 = %d\n", num, x);
}

https://replit.com/@shumbo/cse-130-mutex

