
Project 3: Slug Dining
CSE 130 Principles of Computer
Systems Design

Spring 2023

Project 3 is out!
Use synchronization primitives to implement complex specification

Due 5/14

GitHub Classroom to create a repo, submit on Gradescope

Slug Dining
You are hired as a system manager at the UCSC dining hall.

Write dining.c that works as a dining hall reception.

Each dining has a capacity : the maximum number of students that can be

inside the dining hall at a time.

The cleaning provider often comes in to clean the dining hall
They use chemicals so they can only clean when no students are present

API
dining_t : struct that holds necessary variables.

dining_t* dining_init(int capacity) : constructor for dining_t .

void dining_student_enter(dining_t* dining) : Called when a student tries to
enter.

Blocks if the dining hall is full or cleaning is taking place.

void dining_student_leave(dining_t* dining) : Called when a student leaves.

void dining_cleaning_enter(dining_t* dining) : Called when the cleaning

providers comes in.
Blocks if there is a student or cleaning is already taking place.

void dining_cleaning_leave(dining_t* dining) : Called when cleaning is
complete

void dining_destroy(dining** ptr)

Example 1

dining_t* d = dining_init(3);

dining_student_enter(d); // student 1
dining_student_enter(d); // student 2
dining_student_enter(d); // student 3

// cannot enter so this blocks
dining_student_enter(d); // student 4

// on a different thread
dining_student_leave(d); // student 1 leaves, allowing student 4 to enter
dining_student_leave(d); // student 2
dining_student_leave(d); // student 3
dining_student_leave(d); // student 4

dining_destroy(&d);

Example 2

dining_t* d = dining_init(3);

dining_student_enter(d); // student 1

// this blocks
dining_cleaning_enter(d);

// on a different thread
dining_student_leave(d); // student 1 leaves. cleaning starts.

// cleaning in progress; cannot enter
dining_student_enter(d); // student 2

// on a different thread
dining_cleaning_leave(d); // cleaning is done. student 2 can enter.

dining_student_leave(d);

dining_destroy(d);

Extra credit (20 points)
A naive implementation allows students to enter even if the cleaning provider is

waiting.
If new students constantly enter the dining hall, the cleaning provider will have

to wait indefinitely.

Change your code so that cleaning provider does not have to wait indefinitely.
Assume that students leave after a reasonable amount of time.

(Work on this if you're absolutely sure about the required part)

Lock (Mutex)
Provides mutual exclusion between threads

If one thread is in the critical section, it excludes the others from entering until

it has completed the section

Either locked or unlocked

Allows only one thread to acquire a lock

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&lock);
balance = balance + 1;
pthread_mutex_unlock(&lock);

Condition Variable
Mutex isn't powerful enough in some situations

int balance = 0;

void renter() {
 int salary = work_hard();
 balance += salary;
}

void landlord() {
 while(!(balance >= 1200)) {
 // waiting...
 }
 balance -= 1200;
}

Condition Variable
Mutex?

int balance = 0;
pthread_mutex_t m;

void renter() {
 int salary = work_hard();
 pthread_mutex_lock(&m);
 balance += salary;
 pthread_mutex_unlock(&m);
}

void landlord() {
 pthread_mutex_lock(&m);
 while(!(balance >= 1200)) {
 // ?
 }
 balance -= 1200;
 pthread_mutex_unlock(&m);
}

Condition Variable

int balance = 0;
pthread_mutex_t m;

void renter() {
 int salary = work_hard();
 pthread_mutex_lock(&m);
 balance += salary;
 pthread_mutex_unlock(&m);
}

void landlord() {
 pthread_mutex_lock(&m);
 while(!(balance >= 1200)) {
 pthread_mutex_unlock(&m);
 // wait for renter to deposit
 pthread_mutex_lock(&m);
 }
 balance -= 1200;
 pthread_mutex_unlock(&m);
}

Condition Variable

int balance = 0;
mutex_t m;
pthread_cond_t c;

void renter() {
 int salary = work_hard();
 pthread_mutex_lock(&m);
 balance += salary;
 pthread_mutex_unlock(&m);
 pthread_cond_signal(&c);
}

void landlord() {
 pthread_mutex_lock(&m);
 while(!(balance >= 1200)) {
 pthread_cond_wait(&c, &m); // unlock -> wait for signal -> lock
 }
 balance -= 1200;
 pthread_mutex_unlock(&m);
}

pthread_cond_signal sends a signal to one thread. But it is possible that, because of

the change the thread made, more than one thread can unblock. Use
pthread_cond_broadcast to send signals to all the threads waiting on the condition

variable.

int balance = 0;
mutex_t m;
pthread_cond_t c;

void renter() {
 int salary = work_hard();
 pthread_mutex_lock(&m);
 balance += salary;
 pthread_mutex_unlock(&m);
 pthread_cond_broadcast(&c); // notify both landlord and IRS
}

void landlord() {
 pthread_mutex_lock(&m);
 while(!(balance >= 1200)) {
 pthread_cond_wait(&c, &m);
 }
 balance -= 1200;
 pthread_mutex_unlock(&m);
}

void irs() {
 pthread_mutex_lock(&m);
 while(!(balance >= 500)) {
 pthread_cond_wait(&c, &m);
 }
balance -= 500;

Semaphore
An object with an integer value

Two operations:
Down (Wait, P): Decrement

the value, block if 0

Up (Post, V): Increment

Users specify the initial value

If initialized to two, works as
a lock

Semaphore

sem_t sem;
int ret;
int count = 2;

sem_init(&sem, 0, count);

sem_wait(&sem); // -> 1
sem_wait(&sem); // -> 0
sem_wait(&sem); // -> -1? block

// on a different thread
sem_post(&sem); // unblock ↑

