Project 3: Slug Dining

CSE 130 Principles of Computer
Systems Design

Spring 2023

Project 3 is out!

e Use synchronization primitives to implement complex specification
e Due 5/14

e GitHub Classroom to create a repo, submit on Gradescope

Slug Dining

e You are hired as a system manager at the UCSC dining hall.
o Write dining.c that works as a dining hall reception.

e Each dining has a capacity : the maximum number of students that can be
Inside the dining hall at a time.

e The cleaning provider often comes in to clean the dining hall
o They use chemicals so they can only clean when no students are present

API

e dining_t : struct that holds necessary variables.
e dining_t* dining_init(int capacity) : constructor for dining_t .

e void dining_student_enter(dining_t* dining) : Called when a student tries to
enter.
o Blocks if the dining hall is full or cleaning is taking place.

e void dining_student_leave(dining_t* dining) : Called when a student leaves.

e void dining_cleaning_enter(dining_t* dining) : Called when the cleaning
providers comes in.
o Blocks if there is a student or cleaning is already taking place.

e void dining_cleaning_leave(dining_t* dining) : Called when cleaning is
complete

e void dining_destroy(dining** ptr)

Example 1

dining_t* d = dining_1init(3);

dining_student_enter(d); // student
dining_student_enter(d); // student
dining_student_enter(d); // student

wnN B

// cannot enter so this blocks
dining_student_enter(d), // student 4

// on a different thread

dining_student_leave(d); // student
dining_student_leave(d); // student
dining_student_leave(d); // student
dining_student_leave(d); // student

leaves, allowing student 4 to enter

H~ WON B

dining_destroy(&d);

Example 2

dining_t* d = dining_1nit(3);
dining_student_enter(d); // student 1

// this blocks
dining_cleaning_enter(d);

// on a different thread
dining_student_leave(d); // student 1 leaves. cleaning starts.

// cleaning 1n progress; cannot enter
dining_student_enter(d); // student 2

// on a different thread
dining_cleaning_leave(d); // cleaning 1s done. student 2 can enter.

dining_student_leave(d);

dining_destroy(d);

Extra credit (20 points)

e A naive implementation allows students to enter even if the cleaning provider is
waiting.
o If new students constantly enter the dining hall, the cleaning provider will have
to wait indefinitely.

e Change your code so that cleaning provider does not have to wait indefinitely.
Assume that students leave after a reasonable amount of time.

e (Work on this if you're absolutely sure about the required part)

Lock (Mutex)

e Provides mutual exclusion between threads
o If one thread is in the critical section, it excludes the others from entering until
It has completed the section

e Either locked or unlocked

e Allows only one thread to acquire a lock

pthread_mutex_t lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&lock);

balance = balance + 1;
pthread_mutex_unlock(&lock);

Condition Variable

e Mutex isn't powerful enough in some situations

int balance = 0;

void renter() {
int salary = work_hard();
balance += salary;

}

void landlord() {
while(!(balance >= 1200)) {
// waiting...

}
balance -= 1200;

}

Condition Variable

Mutex?

int balance = 0;
pthread_mutex_t m;

void renter() {
int salary = work_hard();
pthread_mutex_lock(&m);
balance += salary;
pthread_mutex_unlock(&m);

}

void landlord() {
pthread_mutex_lock(&m);
while(!(balance >= 1200)) {
/] ?
}
balance -= 1200;
pthread_mutex_unlock(&m);

Condition Variable

int balance = 0;
pthread_mutex_t m;

volid renter() {
int salary = work_hard();
pthread_mutex_lock(&m);
balance += salary;
pthread_mutex_unlock(&m);

}

volid landlord() {
pthread_mutex_lock(&m);
while(!(balance >= 1200)) {
pthread_mutex_unlock(&m);
// walt for renter to deposit
pthread_mutex_lock(&m);
J
balance -= 1200;
pthread_mutex_unlock(&m);

Condition Variable

int balance = 0;
mutex_t m;
pthread_cond_t c;

volid renter() {
int salary = work_hard();
pthread_mutex_lock(&m);
balance += salary;
pthread_mutex_unlock(&m);
pthread_cond_signal(&c);

}

volid landlord() {
pthread_mutex_lock(&m);
while(!(balance >= 1200)) {
pthread_cond_wait(&c, &m); // unlock -> wait for signal -> lock
J

balance -= 1200;
pthread_mutex_unlock(&m);

pthread_cond_signal sends a signal to one thread. But it is possible that, because of
the change the thread made, more than one thread can unblock. Use

pthread_cond_broadcast to send signals to all the threads waiting on the condition
variable.

int balance = 0;
mutex_t m;
pthread_cond_t c;

void renter() {
int salary = work_hard();
pthread_mutex_lock(&m);
balance += salary;
pthread_mutex_unlock(&m);
pthread_cond_broadcast(&c); // notify both landlord and IRS

}

void landlord() {
pthread_mutex_lock(&m);
while(!(balance >= 1200)) {
pthread_cond_wait(&c, &m);
}
balance -= 1200;
pthread_mutex_unlock(&m);

}

void irs() {
pthread_mutex_lock(&m);
while(!(balance >= 500)) {
pthread_cond_wait(&c, &m);

}

halance -= EBEMM:*

Semaphore

e An object with an integer value

e Two operations:
o Down (Walit, P): Decrement
the value, block if O

o Up (Post, V): Increment

e Users specify the initial value
o If initialized to two, works as
a lock

Semaphore

sem_t sem;
int ret;
int count = 2;

sem_1init(&sem, O, count);
sem_walit(&sem); // -> 1
sem_wait(&sem); // -> 0

sem_wait(&sem); // -> -1? block

// on a different thread
sem_post(&sem); // unblock 1

