
Project 5: Container
CSE 130 Principles of Computer Systems Design

Spring 2023

Project 5 is out!
Sum up all the things we learned in this class

Focus on container and file system

Implement a container runtime that can run a program in a sandboxed
environment

GitHub Classroom to create a repo, submit on Gradescope

Q. We've been using Docker and Dev Container throughout the quarter. But what is a
container?

Container
A container is a standard unit of software that packages up code and all its

dependencies so the application runs quickly and reliably from one computing
environment to another.

A container is created from an image, which is a package of all the dependencies

needed to run an application.

A container runs natively on Linux and shares the kernel of the host machine with

other containers.

Container vs. VM
A virtual machine uses a hypervisor to virtualize the underlying hardware.

Each VM includes a full copy of an operating system

VMs run on top of a physical machine using a hypervisor (e.g. VirtualBox,
VMWare)

A container runs natively on Linux and shares the kernel of the host machine with

other containers.
Each container shares the host OS kernel and, usually, the binaries and

libraries, too.

Containers are isolated from each other and from the host machine using

kernel features.

Credit: Containers vs Virtual Machines | Atlassian

https://www.atlassian.com/microservices/cloud-computing/containers-vs-vms

Isolation
Containers are isolated from each other and from the host machine using kernel

features.
Whatever happens inside a container stays inside the container.

Modern container runtime provides isolation for many resources such as CPU,
Memory, Network, File system, etc.

In this project, we focus on two aspects of isolation: Processes and Filesystem.

Isolating Processes: PID Namespace
Processes in a container should not be able to see processes outside the

container.

PID namespace provides isolation for processes.

Each container has its own PID namespace.

Processes inside a container can only see processes inside the same
container.

Isolating Filesystem: Mount Namespace
Processes in a container should not be able to see files outside the container.

Mount namespace provides isolation for filesystem.

Each container has its own mount namespace.

Processes inside a container can only see files inside the same container.

Creating a new namespace: clone

clone is a system call that creates a new process.
Similar to fork but more flexible.

Specify the functions to run in the child process and an argument to pass, just

like pthread_create .

Specify the flags to create a new PID namespace and mount namespace.

container_t container;
int clone_flags = SIGCHLD | CLONE_NEWNS | CLONE_NEWPID;
int pid = clone(container_exec, &child_stack, clone_flags, &container);

Isolating Filesystem: OverlayFS
Container images are read-only.

We want to reuse the same image for multiple containers.

However, containers need to be able to write to the filesystem.

OverlayFS is a filesystem that allows us to mount a read-only filesystem on top of

a writable filesystem.
The read-only filesystem is called the lower layer.

The writable filesystem is called the upper layer.

The combined filesystem is called the overlay.

Credit: Use the OverlayFS storage driver | Docker Documentation

https://docs.docker.com/storage/storagedriver/overlayfs-driver/

Testing Overlay FS
Note: You need a non-docker Linux environment to test this.

create directories
mkdir lower upper work merged
create a file in the lower directory
echo "this is in lower" > lower/foo
create overlayFS
mount -t overlay overlay -o lowerdir=lower,upperdir=upper,workdir=work merged
check the content of the merged directory
ls merged
cat merged/foo
create changes in the merged directory
echo "new foo" > merged/foo
echo "bar" > merged/bar
check the content of the upper
ls upper

container.c

container.c implements a small container runtime.

It creates a new PID and mount namespace, set up the overlayFS, and run the

program.

The program is specified by the command line arguments.

Container Image
A container image is a directory that contains the root filesystem of the container.

Think of taking a snapshot of the entire filesystem.

Docker uses a layered filesystem to store container images.

Each layer is saved as a tarball.

In this project, we use a directory to represent a container image.
Images are directories under the ./images directory

Creating an image directory
The easiest way to create an image directory is to use docker export .

docker run --rm -it alpine sh
on a different terminal
docker ps
docker export [CONTAINER ID] > alpine.tar
mkdir images/alpine
tar -xf alpine.tar -C images/alpine

Command-Line Interface

./container [ID] [IMAGE] [CMD]...

ID is the ID of the container.

Docker uses a random string as the ID. Here, the user must provide one.

IMAGE is the name of the image directory.

CMD is the command to run inside the container.

Example

prints hello world from container
sudo ./container c1 alpine echo hello world
runs a shell inside the container
sudo ./container c2 alpine sh

Finishing container.c

container.c is missing a few pieces, and your job is to finish it.

main

Parse the command-line arguments and pass them to the child process.

container_exec

Set up the overlayFS.

Call change_root to change the root directory of the container.

Call execvp to run the command.

main

main calls clone to create a child process and execute container_exec .

Modify container_t and main to pass all necessary information to
container_exec .

Creating OverlayFS

int mount(const char *source, const char *target, const char *filesystemtype,
 unsigned long mountflags, const void *data);

For source , use the dummy string "overlay"

target specifies the directory at which the overlayFS will be mounted.
Use the merged directory: /tmp/container/{id}/merged

filesystemtype specifies the type of the filesystem: use "overlay" .

mountflags specifies options that are independent of the type of the filesystem:
use MS_RELATIVE

data specifies options for OverlayFS.
"lowerdir={lower},upperdir={upper},workdir={work}"

{lower} is the path to the image directory.

upper and work directories must be created inside /tmp/container/{id}

Changing Root Directory
Next, the container needs to change its root directory to the merged directory. This is
done using the pivot_root system call.

Because calling pivot_root is a bit complicated, we provide a helper function:
change_root .

void change_root(const char* path);

This function will change the root directory to the specified path, as well as doing some
other things to make the container work properly.

Running the Command
Finally, the container needs to run the command specified by the user. This is done
using the execvp system call.

int execvp(const char *file, char *const argv[]);

file is the path to the executable.

argv is an array of strings that contains the command-line arguments.

Testing with alpine

The alpine image we created earlier can be used to test your container runtime.

check process isolation
sudo ./container my-container alpine ps -A
check filesystem isolation
sudo ./container my-container alpine sh
echo foo > foo.txt

Testing with other images
Surprisingly, our container runtime is capable of running many images. For example,
here is how you can run JavaScript programs using the node image.

create a container image
docker pull node:18-alpine
docker run --rm -it node:18-alpine sh
on a different terminal
docker ps
docker export {container-id} > node.tar
mkdir images/node
tar -xf node.tar -C images/node
run the image
sudo ./container node-container node node

Try running your favorite image!

